If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x+4x^2=0
a = 4; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·4·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*4}=\frac{-40}{8} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*4}=\frac{0}{8} =0 $
| 4.3x+2.6=-10.3 | | 28x^2+59x+39=0 | | y/10-8=102 | | y=2(3)^2-5 | | 3x*2+-4x=2x*2+x-2 | | 20=-2x-7 | | F(x)=-x^+5(-x) | | F(14)=8-4x | | y=2(0)^2-5 | | 7x+5(-x+13)=89 | | -3+5x-6x=-5 | | y=2(-1)^2-5 | | 5/8×n=1 | | 4x-7-2x-10=5 | | 8(n+1)-(n+2)=n+12+3n | | y=2(-2)^2-5 | | 2-3(2x+1)=5-4x | | 25(m-2)=650 | | -7(6x-2)+6=-42+20 | | 3x-53=19 | | z/5-5=2.75 | | 6+2e=18 | | 5x=(14x-10) | | 9×-7=9(x+9) | | 12x+10=4x-70 | | 9^4x+1=3^x/4 | | 7u^2-55u-8=0 | | 12x10=4x-70 | | -7x-2(-x+17)=-79 | | 12-2x+8=3-8x+8 | | 125=5(m-7) | | 9=s3 |